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Abstract
The transport of charged particles in partially turbulent magnetic systems is
investigated from first principles. A generalized compound transport model
is proposed, providing an explicit relation between the mean-square deviation
of the particle parallel and perpendicular to a magnetic mean field, and the
mean-square deviation which characterizes the stochastic field-line topology.
The model is applied in various cases of study, and the relation to previous
models is discussed.

PACS numbers: 52.25.Xz, 51.10.+y

1. Introduction

The analytical description of magnetic field-line wandering, or random walk, in partially
turbulent systems is a long standing problem in astrophysics, space physics and turbulence
physics. In a number of previous works (e.g., Krommes et al (1983), Matthaeus et al
(1995), Ruffolo et al (2004), Ragot (2006), Shalchi and Kourakis (2007)), detailed linear and
nonlinear calculations have been performed in order to understand the field-line random walk,
in association with the random behavior of dynamical charged particle trajectories in turbulent
plasma systems.

The transport of charged particles perpendicular to a large scale magnetic field (e.g.,
the magnetic field of the Sun, if particle propagation in the solar system is investigated) is
often modeled in relevance with field-line wandering. In certain studies, it was assumed that
field-line wandering behaves diffusively, yet without giving a justification for this assumption
(e.g. Kóta and Jokipii (2000), Webb et al (2006)). Other theoretical approaches, such as the
nonlinear guiding-center theory (Matthaeus et al 2003), the extended NLGC theory (Shalchi
2006) or the weakly nonlinear theory (Shalchi et al 2004) have extended that methodology,
yet neither using any assumptions about field-line wandering nor assuming that the field-line
behavior has a direct influence onto particle propagation.
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An open issue in the cosmic ray transport theory is the subdiffusive behavior of
perpendicular transport in slab models and the recovery of diffusion for non-slab geometry, as
was observed in test-particle simulations (e.g. Qin et al 2002a, 2002b). Although the extended
nonlinear guiding-center theory (Shalchi 2006) can explain subdiffusion in the slab model as
well as the recovery of diffusion in slab/2D composite geometry quantitatively, no physical
explanation is yet available, to our knowledge, for these different regimes to be understood.
In this paper, we address this problem by relating field-line transport coefficients with particle
transport parameters. Via a generalized compound diffusion model, relying on a flexible
parametrization of the field-line diffusion and of (in relation with) the actual particle trajectory
diffusion in the directions parallel and perpendicular to the magnetic field, we aim to show
that different particle random walk regimes obtained in the past come out to be precisely the
consequence of underlying assumptions concerning the random behavior of magnetic field
lines. The outcome of this study will be important in the theoretical interpretation of charged
cosmic ray transport, as provided by space observations.

2. Random walk of magnetic field lines

We shall consider a collisionless magnetized plasma system which is embedded in a uniform
mean field ( �B0 = B0�ez) in addition to a turbulent magnetic field component δ �B. The field-
line equation in this system reads dx/dz = δBx/B0. Here we assumed a vanishing parallel
component of the turbulent field δBz = 0. We also assume that the mean field �B0 is aligned
parallel to the z-axis of our (cartesian) system of coordinates.

A characteristic quantity to describe field-line random-walk (FLRW) is the mean-square
displacements (MSD’s) 〈(�x)2〉 and 〈(�y)2〉 for large values of z. In the following we only
consider the variable x, since all calculations can easily be repeated for y. For axisymmetric
turbulence, which is assumed to be a good approximation for real turbulent systems, we have
〈(�x)2〉 = 〈(�y)2〉. In this case the results derived in this paper for 〈(�x)2〉 can also be used
for 〈(�y)2〉.

By doing this, one anticipates an asymptotic behavior in the following form:

〈(�x)2〉|z→±∞ = α|z|β. (1)

Field-line wandering is thus characterized by identifying different parameter regimes for β:

0 < β < 1: subdiffusion

β = 1: normal (Markovian) diffusion

1 < β < 2: superdiffusion

β = 2: ballistic behavior.

(2)

In the past several approaches have been proposed to describe FLRW analytically.
In the so-called slab turbulence approach (i.e. assuming that the turbulent fields only

depend on the parallel position variable, namely δBi(�x) = δBi(z), for i = x, y) the field-line
MSD can be calculated exactly. By assuming a constant wave-spectrum at large turbulence
scales (energy range) we find a diffusive behavior of the field lines:

〈(�x)2〉 = 2κFL|z| (3)

with the field-line diffusion coefficient κFL.
The description of FLRW in non-slab turbulence models is more problematic. As an

example, we consider the so-called two-component turbulence model, where we have a
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hybrid combination of the slab and 2D fluctuations (in the latter model, one assumes that
δBi(�x) = δBi(x, y), for i = x, y). In the slab/2D composite model we have, precisely,

δBi(�x) = δB
(slab)
i (z) + δB

(2D)
i (x, y) (4)

(for i = x, y). In this case the field-line equation takes the nonlinear form

dx(z) = δB(slab)
x (z)

B0
dz +

δB(2D)
x (x, y)

B0
dz, (5)

and an analogous relation holds for the y-component.
In our knowledge, at least three different theories have been developed to describe FLRW

analytically:

(i) Quasilinear theory (QLT, Jokipii (1966)) consists in replacing the field-line equation on
the right-hand side of equation (5) by the unperturbed lines (i.e. the rectilinear magnetic
field topology in the absence of turbulence), say at x = y = 0. For pure slab geometry(
δB(2D)

x (x, y) = 0
)
, the QLT for FLRW is exact. However, for pure 2D turbulence we

have within the QLT

dx(z) = δB(2D)
x (0, 0)

B0
dz = δB(2D)

x

B0
dz (6)

and thus we find for the MSD,

〈(�x)2〉 = δB2
x

B2
0

z2. (7)

This result is also obtained for slab/2D composite geometry within the QLT, since the
second term in equation (5) is dominant.

(ii) Matthaeus et al (1995) proposed a non-perturbative approach based on three ad hoc
assumptions (namely, the so-called Corrsin hypothesis, Gaussian statistics for the field
lines and diffusive FLRW behavior). The following form of the field-line diffusion
coefficient

κFL =
κFL,slab +

√
κ2

FL,slab + 4κ2
FL,2D

2
(8)

is thus deduced. Here, κFL,slab is the pure slab field-line diffusion coefficient and κFL,2D is
the pure 2D field-line diffusion coefficient.

(iii) An improved nonlinear theory for field-line wandering has recently been proposed by
Shalchi and Kourakis (2007). In comparison to the Matthaeus et al (1995) approach,
the authors still rely on the validity of the Corrsin hypothesis and on field-line Gaussian
statistics. However, instead of applying a diffusion model as used by Matthaeus et al
(1995), an ordinary differential equation (ODE) is derived for the field-line MSD. By
solving this ODE analytically in the limit |z| → ∞, it is deduced, for slab/2D composite
turbulence geometry,

〈(�x)2〉 =
[

9C(ν)

√
π

2
l2D

]2/3

|z|4/3, (9)

which is clearly a superdiffusive result. Here C(ν) is a normalization function which
depends on the inertial range spectral index 2ν, l2D is the 2D bendover scale of the
turbulence (this parameter indicates the turnover from the energy range to the inertial range
of the spectrum), and δB2

2D

/
B2

0 denotes the relative strength of the turbulent magnetic
fields. The theory recently presented by Shalchi and Kourakis (2007) is essentially a
generalization of the Matthaeus et al (1995) approach, yet relies on minimum physical
assumptions, thus the description of turbulence by equation (9) may be considered to be
more reliable than the diffusive result (8).
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In principle we know three different results of FLRW:

• 〈(�x)2〉 ∼ z2: this result can be found in the initial free-streaming regime and within the
QLT for two-component (composite) turbulence.

• 〈(�x)2〉 ∼ |z|: the diffusive result can be derived exactly for slab geometry and a constant
spectrum at large turbulence scales. Furthermore, Matthaeus et al (1995) have claimed
that FLRW also behaves diffusively for slab/2D composite geometry.

• 〈(�x)2〉 ∼ |z|4/3: according to Shalchi and Kourakis (2007), the field lines behave
superdiffusively in the two-component model.

In the following, we shall combine these different results of FLRW with the guiding-center
approximation and various transport models, in view of a critical comparison among different
models.

3. The guiding-center approximation

In several previous papers it has been assumed that charged particles follow magnetic field
lines (Jokipii 1966, Kóta and Jokipii 2000, Matthaeus et al 2003):

ṽx = vz

δBx(�x)

B0
, (10)

where vz is the parallel velocity of the charged particle and ṽx the perpendicular velocity of its
guiding center. This equation can easily be deduced from the field-line equation which reads
dx = dz δBx/B0. A formula which is equivalent to equation (10) is

σ⊥(t) =
∫ +∞

−∞
dz σFL(z)f‖(z, t). (11)

Here we have defined the mean-square deviation (MSD) of the particle displacement in the
perpendicular direction

σ⊥(t) = 〈(�x(t))2〉, (12)

the MSD of the field lines

σFL(z) = 〈(�x(z))2〉FL (13)

and the parallel particle distribution function f‖(z, t). It should be noted that an equivalent
formula is given by Krommes et al (1983). In the following we discuss two models for f‖(z, t).

4. A Gaussian transport model for parallel scattering

We may assume a Gaussian particle distribution function

f‖,G(z, t) = 1√
2πσ‖(t)

e−z2/(2σ‖(t)), (14)

where we have employed the particle MSD in the parallel direction

σ‖ = 〈(�z(t))2〉. (15)

Equation (11) thus becomes

σ⊥(t) = 1√
2πσ‖(t)

∫ +∞

−∞
dz σFL(z) e−z2/(2σ‖(t)). (16)
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4.1. General results

To proceed with, we may assume the form

σFL(z) = αFL|z|βFL (17)

to obtain

σ⊥(t) = αFL√
2πσ‖(t)

∫ +∞

−∞
dz|z|βFL e−z2/(2σ‖(t)). (18)

This integral can easily be solved (Gradshteyn and Ryzhik 2000), so one gets

σ⊥(t) = αFL√
π

	

(
βFL + 1

2

)
(2σ‖(t))βFL/2, (19)

where we used the gamma function 	(x). Furthermore, we assume the forms

σ‖(t) = α‖tβ‖ , σ⊥(t) = α⊥tβ⊥ . (20)

By comparing with equation (19) we obtain

α⊥ = αFL√
π

	

(
βFL + 1

2

)
(2α‖)βFL/2 (21)

and, more important by,

β⊥ = β‖βFL

2
(22)

for consistency. We see that the independent parameters appearing in (21) and (22) can be
used to fine-tune and distinguish different versions of the statistical theory of turbulence,
and possibly explain the different results obtained via different assumptions. Our ambition
in the following is to pin-point this possibility, by employing specific paradigms. For this
purpose, we shall distinguish three different cases, for the field-line statistics, in the following
paragraphs.

4.2. Diffusive behavior of FLRW and parallel transport

For pure slab geometry and assuming a constant spectrum in the energy range, it can be shown
that field-line wandering behaves diffusively, and thus βFL = 1. If we additionally assume
that parallel transport also behaves diffusively, namely β‖ = 1, we find

α⊥ = αFL

√
2α‖
π

(23)

and

β⊥ = 1
2 . (24)

For the diffusive field-line behavior we may introduce the field-line diffusion coefficient κFL

via

σFL(z) = 2κFL|z| (25)

and thus αFL = 2κFL, and the parallel diffusion coefficient κ‖ of the particle position
displacement via

σ‖(t) = 2κ‖t; (26)

hence α‖ = 2κ‖. Therefore we find

α⊥ = 4κFL

√
κ‖
π

. (27)
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Obviously one gets

σ⊥(t) = 4κFL

√
κ‖t
π

(28)

which is clearly a non (classical) diffusive result.
Concluding this paragraph, we have seen that a direct consequence of having assumed

diffusive field-line wandering and diffusive particle propagation in the parallel direction is
a subdiffusive result for perpendicular particle transport, in the form σ⊥(t) ∼ √

t . This
coincides with the result(s) obtained by Krommes et al (1983), also within the compound
diffusion model of Kóta and Jokipii (2000), and via the extended nonlinear guiding-center
theory (Shalchi, 2006).

4.3. Free streaming of field lines

For small length scales the field-line mean-square deviation reads

σFL(z) = δB2
x

B2
0

z2 (29)

and thus

αFL = δB2
x

B2
0

and βFL = 2. (30)

Substituting into equations (21) and (22), we find in this case

α⊥ = δB2
x

B2
0

α‖, β⊥ = β‖. (31)

Parallel and perpendicular charged particle transport therefore present the same time behavior
if the field lines can be described by equation (29).

4.4. The 4/3-result of Shalchi and Kourakis (2007)

According to the results of an improved theory for field-line wandering, recently proposed by
Shalchi and Kourakis (2007), we find, for slab/2D turbulence:

βFL = 4/3. (32)

As a consequence, we find from (22)
β⊥
β‖

= 2

3
. (33)

It has been argued in several previous papers (see Qin et al 2002a, 2002b), by using test-
particle simulations, that parallel and perpendicular transport behave diffusively in the case of
the two-component (composite) model. The question of how this recovery of diffusion can be
explained remains unanswered. However, by assuming a symmetric deviation of the diffusive
regime of parallel and perpendicular transport

β⊥ = 1 − ε, β‖ = 1 + ε (34)

(here we assumed a weak subdiffusive behavior of perpendicular transport and a weak
superdiffusive behavior of parallel transport), it can easily be shown that

ε = 2 − βFL

2 + βFL
(35)

from (22), and thus for βFL = 4/3 this becomes

ε = 0.2. (36)

This very weak deviation from the diffusive regime cannot be excluded by test-particle
simulations.
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5. A ballistic transport model for parallel scattering

An alternative to the Gaussian distribution hypothesis adopted in the previous section is a
ballistic model of the form:

f‖,B(z, t) = δ (z − z0(t)) (37)

where we have denoted the unperturbed orbit z0(t) = vµt , defining the particle trajectory’s
pitch-angle cosine µ. In the unperturbed system (δBx = δBy = 0) the pitch angle and therefore
the parameter µ are conserved. Equation (11) with equation (37) for f‖(z, t) becomes

σ⊥(t) = σFL(z = z0(t)) ≡ σFL(z = vµt). (38)

5.1. General results

Again we assume the form of equation (17) for σFL to find

σ⊥(t) = αFL(vt |µ|)βFL . (39)

By assuming the form of equation (20) for σ⊥ we can deduce

α⊥ = αFL(v|µ|)βFL,

β⊥ = βFL.
(40)

Therefore, within the ballistic model, the time exponent of the perpendicular MSD and the
length exponent of the field-line MSD are the same.

In the following, we shall consider, two of the three examples exposed above, for the sake
of comparison.

5.2. Diffusive behavior of field-line wandering

Applying equations (25) and (37) we get

σ⊥ = 2κFLvt |µ|. (41)

Because µ itself is a statistic quantity with −1 � µ � +1, the formula can be averaged by
integrating with respect to µ, setting

σ⊥ = 2κFLvt

(
1

2

∫ +1

−1
dµ|µ|

)
; (42)

hence

σ⊥ = κFLvt. (43)

Therefore, within the ballistic model and for a diffusive behavior of FLRW we find the well-
known quasilinear result for perpendicular transport often referred to as FLRW limit (Jokipii
1966). For the perpendicular diffusion coefficient κ⊥ we thus find

κ⊥ = v

2
κFL, (44)

so the perpendicular particle transport coefficient κ⊥ is efficiently associated with the field-line
diffusion coefficient κFL.
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5.3. Free streaming of field lines

Here, we combine equation (29) with equation (38) to find

σ⊥ = (vµt)2 δBx

B0
(45)

and thus

σ⊥ = 1

3

δB2
x

B2
0

v2t2, (46)

where the pitch-angle cosine variable µ was again averaged out. Equation (46) corresponds
to a ballistic motion of charged particles. Furthermore, this formula is in agreement with the
quasilinear result for perpendicular transport obtained by Shalchi and Schlickeiser (2004) for
two-component turbulence.

6. General results in the compound transport formulation

In the last two sections, we have discussed two specific models for the parallel particle
distribution function, namely the Gaussian model and the ballistic model. In this section,
we shall discuss some general properties of the compound transport model, that is, without
specifying the form of the parallel distribution function.

6.1. The initial free-streaming regime

A free-streaming-like behavior of field lines is found in some cases (e.g., for small length
scales, or if QLT for FLRW is applied for slab/2D composite geometry). In this case we can
combine equations (29) and (11) to get

σ⊥(t) = δB2
x

B2
0

∫ +∞

−∞
dz z2f‖(z, t)

= δB2
x

B2
0

σ‖(t) (47)

regardless of the form of f‖(z, t). Therefore, for free-streaming of field lines we find

σ⊥(t)

σ‖(t)
= δB2

x

B2
0

. (48)

In this case the temporal behavior of parallel and perpendicular transport are the same. In the
solar wind at a 1 AU heliocentric distance, we have δB2

x ≈ B2
0 . Thus, the mean free path

perpendicular to the mean field becomes comparable to the parallel mean free path. For length
scales where we have free-streaming of field lines we thus find strong perpendicular scattering
of charged cosmic rays.

6.2. Diffusive behavior of FLRW and parallel transport

In section 4.2 we combined the Gaussian model with a diffusive behavior of parallel transport
and FLRW to demonstrate that we obtain subdiffusion in the form σ⊥ ∼ √

t . In the
following, we shall show that the assumption of Gaussian statistics is not necessary to get
the subdiffusive perpendicular transport of charged particles. Upon differentiating the basic
compound transport relation (11), one gets

∂

∂t
σ⊥(t) =

∫ +∞

−∞
dz σFL(z)

∂f‖(z, t)
∂t

. (49)
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Diffusion in the parallel direction may be assumed, for tractability. Thus, the function f‖(z, t)
satisfies the diffusion equation

∂f‖(z, t)
∂t

= κ‖
∂2f‖(z, t)

∂z2
. (50)

Furthermore, running diffusion coefficients can be introduced by

d⊥(t) ≡ 1

2

∂

∂t
σ⊥(t),

dFL(t) ≡ 1

2

∂

∂z
σFL(z).

(51)

Thus equation (49) becomes

d⊥(t) = κ‖
∫ ∞

0
dz σFL(z)

∂2f‖(z, t)
∂z2

= −2κ‖
∫ ∞

0
dz dFL(z)

∂f‖(z, t)
∂z

= 2κ‖
∫ ∞

0
dz

∂dFL(z)

∂z
f‖(z, t), (52)

where we applied dFL(z = 0) = 0. Now we assume diffusion of field lines, so we have

dFL(z) = κFL − ε(z) (53)

with

ε(z = 0) = κFL, ε(z → ∞) → 0. (54)

Because of ∂dFL(z)/∂z = −ε′(z) (the prime denotes differentiation) we have

d⊥(t) = −2κ‖
∫ ∞

0
dz ε′(z)f‖(z, t). (55)

However, if the field lines behave diffusively, the function ε(z) (and therefore also ε′(z)) must
decay rapidly with increasing z. Thus one gets

d⊥(t) = −2κ‖f‖(z = 0, t)

∫ ∞

0
dz ε′(z)

= 2κ‖[ε(z = 0) − ε(z = ∞)]f‖(z = 0, t). (56)

Combining with equation (54), we deduce

d⊥(t) = 2κ‖κFLf‖(z = 0, t). (57)

As an example, we may consider again the Gaussian transport model. Evaluating equation (14)
at z = 0, one can easily recover equation (28) as a special limit of equation (57). However,
equation (57) is more general, and can also be applied on non-Gaussian statistics. In real
physical systems, one expects that the probability to find the particle at z = 0 decreases with
time (f‖(z = 0, t → ∞) → 0), so consequently

d⊥(t) → 0, (58)

which is interpreted as subdiffusion. Thus, for parallel diffusion of charged particles in
combination with a diffusive behavior of FLRW, we find subdiffusion in the perpendicular
direction.
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7. Summary and conclusion

In this paper we have discussed the generalized compound diffusion mechanism, which relates
field-line statistics (wandering) to charged particle random walk in real (position) space. By
applying the guiding-center approximation (equation (11)) and a Gaussian transport model for
parallel scattering (equation (14)) we deduced the general relation

β⊥ = β‖βFL

2
. (59)

Here β⊥ and β‖ are the time exponents of the perpendicular and parallel MSD’s of the particles
whereas βFL is the length exponent of the field-line MSD.

For diffusive FLRW (βFL = 1) and diffusive parallel motion of charged particles (β‖ = 1),
we always find subdiffusion in the form σ⊥(t) ∼ √

t . This relation was derived in several
previous papers (e.g. Krommes et al (1983), Kóta and Jokipii (2000), Shalchi (2006)).
However, as demonstrated in this paper, we always get this subdiffusive behavior if FLRW
and parallel transport behave diffusively. Perpendicular diffusion and parallel diffusion can
only be obtained for βFL = 2—see equation (59)—which corresponds to free-streaming of
field lines.

By replacing the Gaussian transport model by a ballistic model, and by assuming diffusive
behavior of FLRW one can easily recover the well-known quasilinear result often referred to
as FLRW limit (Jokipii 1966). By combining the quasilinear FLRW result for two-component
turbulence—see equation (7)—with the ballistic model we find superdiffusion of charged
particles in the perpendicular direction. Thus, the generalized compound transport model
discussed in this paper is able to obtain the well-known QLT results in appropriate special
limits.

By applying the relation σFL(z) ∼ |z|4/3, i.e. the superdiffusive result obtained by Shalchi
and Kourakis (2007), and by assuming a weakly superdiffusive behavior of parallel transport
(e.g. β‖ = 1.2), we find that perpendicular diffusion is nearly recovered (e.g. β⊥ = 0.8). This
recovery of perpendicular diffusion is an effect which can be found in test particle simulations
(e.g. Giacalone and Jokipii (1999), Qin et al (2002b)). For diffusive behavior of field lines and
parallel diffusion of charged particles these simulations cannot be reproduced theoretically.
However, the combination of the Shalchi and Kourakis (2007) theory for field-line wandering
with the generalized compound transport model is able to describe this effect.

Our results are important in the theoretical interpretation of cosmic ray transport, following
(and interpreting) measurements provided by space observations. It will be the subject of future
work to compare these new results with test-particle simulations and solar wind observations.
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